
Optimizing Heat Alert 
Issuance with 
Reinforcement Learning
Ellen Considine, collaborating with Mauricio Tec
Supervised by Rachel Nethery and Francesca Dominici

ENAR – March 12, 2024



Extreme heat, public health, & heat alerts

1Source: CDC



Extreme heat, public health, & heat alerts

1Source: CDC



Context

● Current issuance of heat alerts by the National Weather Service (NWS) 

does not take advantage of modern data science tools

2



Context

● Current issuance of heat alerts by the National Weather Service (NWS) 

does not take advantage of modern data science tools
○ Decision to issue an alert is based on temperature thresholds (differing in northern and 

southern states) 

○ Also strongly affected by the discretion of the local office → stochasticity

2



Context

● Current issuance of heat alerts by the National Weather Service (NWS) 

does not take advantage of modern data science tools
○ Decision to issue an alert is based on temperature thresholds (differing in northern and 

southern states) 

○ Also strongly affected by the discretion of the local office → stochasticity

● Analysis by Hondula et al. 2022 suggests that spatial variability in the 

current NWS/local office approach is not well aligned with the health risk 

from heat
2
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county level
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Context (cont.)

● Past work → some evidence of heat alerts being health-protective at the 

county level
○ Large uncertainty and substantial heterogeneity

● Meanwhile: a growing movement in statistics and public health of focusing 

on policy optimization in addition to effect estimation
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Related work on heat alert optimization

1. Wu et al. 2023: developed a causal inference technique for stochastic 
interventions to infer whether increasing the probability of issuing a heat 
alert would be beneficial

2. Masselot et al. 2021: compared methods to identify localized thresholds 
above which heat alerts should always be issued

Neither of these approaches addresses the complications of sequential 
dependence 

- Alert fatigue
- Running out of resources to deploy precautionary measures 4
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○ Successful in fields ranging from robotics to mobile health
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Intro to reinforcement learning (RL)

● RL is a rapidly-expanding field of approaches for dealing with sequential 

decision making (SDM) problems 
○ Successful in fields ranging from robotics to mobile health

● Algorithmic agent uses a policy (e.g. when to issue a heat alert) to interact 

with an environment/system to maximize/minimize its reward/penalty 

(e.g. deaths or hospitalizations)
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RL in the heat alerts setting
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Environment, structured as a 
Markov Decision Process (MDP)
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Heat alerts MDP

Daily, US county-level data → each episode is one county-summer (May - Sept.)

● State: 
○ Exogenous: quantile of heat index or QHI (2006-2016), day of summer, weekend 

○ Endogenous: recent alert history, remaining alert budget (stay tuned!)

● Action: issue (1) or do not issue (0) a heat alert

● Reward: rate of heat-related hospitalizations (among Medicare enrollees), 

transformed such that fewer hospitalizations = greater reward
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Major challenges

● Low signal (small and easily confounded effects) in observational 

environmental health datasets
○ Rare events and low signal have been shown to challenge algorithmic decision making

● Spatial variability in heat alert-health relationship due to geographic 

self-selection, climate adaptation, socioeconomic status, population 

density, political ideology, and environmental co-exposures (e.g. AQ) 
○ Mainstream RL/SDM methods are not suitable for spatially heterogeneous settings 

● Limited intervention budget (esp. to compare with NWS policy) 8
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Novel framework to address challenges

1. Create a realistic SDM environment with which to train and evaluate RL and 

other counterfactual policies relative to the observed NWS policy

2. Run single-county RL and provide domain-relevant insights about the 

results
a. Enables using standard RL algorithms that were not designed for spatially heterogeneous 

systems

b. Simplifies the state space by getting to ignore time-fixed covariates during RL training
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Novel framework to address challenges

1. Create a realistic SDM environment with which to train and evaluate RL and 

other counterfactual policies relative to the observed NWS policy
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RL environment / simulator

Need:

1. Reward function R: generate rt given (st, at)

2. Transition function P: generate st+1 given (st, at)
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Overview of the rewards model

● Bayesian hierarchical model → county-specific coefficients for both the 

baseline hospitalization rate and the effectiveness of heat alerts

● Data-driven prior using spatial features 

● Variational inference to handle the high dimensionality of parameters

● Careful specification of the outcome to avoid 

mediation by heightened awareness of 

current symptoms 

11



Overview of the transition model

12



Overview of the transition model

where ξ is exogenous and x is endogenous

12



Overview of the transition model

where ξ is exogenous and x is endogenous

→ Rather than introduce error via modeling, sample weather trajectories!

12



Overview of the transition model

where ξ is exogenous and x is endogenous

→ Rather than introduce error via modeling, sample weather trajectories!

To avoid overfitting 2006-2016 during 

single-county RL, augment the exogenous data 

with weather trajectories from other counties in 

the same regional climate zone
12



Recap: Bayesian Rewards Over Actual Climate History
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Novel framework to address challenges

1. Create a realistic SDM environment with which to train and evaluate RL and 

other counterfactual policies relative to the observed NWS policy

2. Run single-county RL and provide domain-relevant insights about the 

results
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30,000 foot view of RL algorithms

● Three major families of algorithms: value (Q) learning, policy learning, and 

actor-critic

● Important differentiator: how is exploration induced?
○ Deterministic policy with epsilon-greedy (choose action at random with prob ε)

○ Stochastic policy (the policy itself is a probability distribution → sample from it)

● We investigate using four of the most widely used RL algorithms
○ Both deterministic and stochastic

○ Including Q-learning, policy learning, and actor-critic 14



Constrained RL

Two related problems:

● Can’t issue too many alerts
● Heat alerts only make sense on very hot days
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Constrained RL

Two related problems:

● Can’t issue too many alerts
● Heat alerts only make sense on very hot days

Our approach:

● Strictly limit the number of alerts in an episode to that issued by the NWS
○ Allows exact comparison with NWS policy using modeled rewards

● Restrict issuance of alerts to very hot days (suffix “.QHI”)
○ Identify optimal threshold for each county 15
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Main RL results

● Standard RL methods perform worse than NWS

● RL policies modified by our QHI restriction outperform the NWS with 

statistical significance 
○ But there was large heterogeneity across counties

● Best RL issued stochastic policies
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CART results

RL performs best in counties with:

● High alert-health signal (as estimated by our rewards model)
○ Especially when it is optimal to issue alerts earlier in the summer than NWS

● More prolonged heat waves (indicated by longer streaks of alerts in 

threshold-based policies such as NWS)
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Directions for future work

● Ensure new policy is never worse than existing policy in each county

● Determine alert budget in a changing system (e.g. due to climate change)

● Multi-objective RL to consider multiple kinds of health data, across age 

groups

● For RL methodologists: development of new general-purpose algorithms 

that perform robustly in this kind of setting
○ We will publish the BROACH simulator to facilitate
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Thank you!

Co-authors: Mauricio Tec, Rachel Nethery, Francesca 

Dominici, and Greg Wellenius

Check out our preprint on arXiv!

National Studies on Air Pollution & 

Health (NSAPH) Research Group
National Science Foundation



Additional Slides



Basics of a Markov Decision Process

MDP is a tuple

Expected reward function

Transition function

Policy

Objective: finite-horizon value function 7



Discussion

● Modest absolute public health benefit, but cost-effective intervention 
○ About 222 NOHR hospitalizations per year saved across US (approximate 95% CI = (-491, 

1,131)), using Medicare population from 2011

○ Increases to 262 if under a safe policy s.t. counties which would not benefit are unaffected

○ Also: both frequency of extreme heat events and size of Medicare population are projected 

to continue increasing

● Palatability of a stochastic policy?
○ Less immediately satisfying

○ But for human-in-the-loop, an algorithm reporting probabilities is more informative

○ In any case, would need to utilize exploration to update an online RL over time



Bayesian hierarchical model for rewards

Let (j, k) index a county-summer and t index time (days in the summer)

Baseline rate

Alert effectiveness

Allows non-linearity 
through st and vt 
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Aggregated by regional climate zone
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Rewards model results

Displayed very good coverage 
when we ran it on synthetic data 
(1,000 samples from the 
posterior predictive) using known 
coefficients: average coverage 
across parameters for 90% CI 
was 0.897

Alert fatigue 17



Only have 11 summers per county… To address this plus low signal:

1. Borrow statistical strength across counties using a data-driven random 
effects prior (based on spatial features w)

2. Inject domain knowledge / assumptions on the sign of certain coefficients

Can be seen as a form of Empirical Bayes

Rewards model estimation
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Rewards model estimation

Only have 11 summers per county… To address this plus low-signal:

1. Borrow statistical strength across counties using a data-driven random 
effects prior (based on spatial features w)

2. Inject domain knowledge on the sign of certain coefficients
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1. Past heat alerts cannot increase the baseline hospitalization rate

2. Higher QHI cannot decrease the effectiveness of heat alerts — note that 

this is conditional on day of summer



Additional details

Domain knowledge-based constraints:

1. Past heat alerts cannot increase the baseline hospitalization rate

2. Higher QHI cannot decrease the effectiveness of heat alerts — note that 

this is conditional on day of summer

Model fitting with Pyro: 

● Use variational inference to handle the high dimensionality of parameters 

(approximate the true posterior distribution)



Experimental Setup

Baselines: other alternative policies

● Random, basic NWS thresholds, top k hottest days, always alert above an 
optimized threshold 

Held-out test years: {2007, 2011, 2015}

● Training: all counties, training years
● Validation / tuning: all counties except the county of interest, testing years
● Final evaluation: county of interest, testing years

Ran experiments on 30 counties 

(spread across the five main 

climate regions) 
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Heterogeneity across counties

Oracle 27



Temporal characteristics
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Example county-summer 
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CART: contrastive analysis

Best Policy Type
[Classification probabilities for:
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CART: contrastive analysis
Regression tree: RL performs 

better than NWS when RL 

determines it is optimal to issue 

alerts earlier in the summer

Higher signal ~ higher median HH 
income

Longer streaks ~ more humid 
regions

Best Policy Type
[Classification probabilities for:

A2C.QHI, AA.QHI, NWS, TRPO.QHI]
Fraction of Counties 


